
O U T O F T H E B O X : S E L F - O R G A N I Z I N G AWA R E N E S S

M I C H A E L M A N T H E Y

tauquernions.org
manthey@acm.org

Abstract: Space-like computation - the complement to Turing’s
time-like computation - is inherently distributed, self-organizing,
and capable of multi-level awareness [aka. consciousness]. The sec-
tion headings are: Introduction, Definition and Description of Space-
like Computation, The Fundamental Reasoning Behind Space-like
Computation, Primitive Functionalities, Use of Event Windows, How
Space-like Computations Satisfy Goals, Security, and Miscellaneous;
includes an Appendix with the essential source code. The paradigm
has the signature Up1q � SUp2q � SUp3q � SOp4q using geometric
(Clifford) algebra over Z3 � t0, 1,�1u. This document is extracted
from the USPTO application of 2015 [incl. international], with minor
edits and annotations; the patent issued on April 28, 2020.

1 introduction

Computation, whether understood as explicit executions on hardware
or more abstractly as literal sequences of otherwise unspecified events, is
inherently time-like, in that at its very core, each step is fundamentally
irreversible. Sequential computation by its very nature consumes informa-
tion, and this includes so-called parallelism - the organized execution of
multiple copies of one or more sequential processes. These are facts sup-
ported by key mathematical theorems by Alan Turing (1920-40’s) and
Claude Shannon (1948++). This kind of computation is therefore called
time-like, and is characteristic of virtually all computation today.

The present invention [1] presents a new kind of computation - Space-
like Computation - that is the conceptual opposite of time-like computation.
Space-like computation is reversible (ie. wave-like) and creates informa-
tion (see the Coin Demonstration, below). This invention rests on novel
mathematics, which show that space-like computations are in principle
different from traditional sequential (and parallel) computations.



2 out of the box : self-organizing awareness

As a result there is no inbuilt sense of "time" in a space-like computa-
tion, although there is plenty of change. This change can either be viewed
as the evolution of a complex waveform (representing the activity spec-
trum of the computation) or as the dynamics of a population of discrete
concurrent bit-flips - the two views are EXACTLY equivalent, courtesy of
another theorem, Parseval’s Identity (1799).

Parseval’s Identity states that the projection of a function F onto an n-
dimensional orthogonal space is the Fourier decomposition of F. Parse-
val’s Identity is a generalization of the Pythagorean theorem to n dimen-
sions. In the n-dimensional coordinate system, F’s current value corre-
sponds to a hyper-hypotenuse in an n-dimensional hyper-cube, and the
projection breaks that hyper-hypotenuse down into the various pieces
along each of the dimensions that go into its construction.

To construct an n-dimensional cube, begin with an ordinary plane
right triangle with unit sides a and b. Reflect this triangle on its hy-
potenuse, forming a square with sides a and b, area ab, and diagonal
d �

?
a2 � b2. Next, lift this square one unit vertically (c) to make a

unit cube with volume abc. Its diagonal is d �
?
a2 � b2 � c2 and this

sum-of-squares symmetry continues as we make a 4d cube, then 5d, etc.

At the same time, going back to the starting right triangle, we can
also express the sides a and b as a � cos θ and b � sin θ, where θ is the
angle between a and the hypotenuse. And now all becomes clear: substi-
tuting these sine and cosine equivalents for a,b, c,d, ... up through the
dimensions will yield, for the n-dimensional hypotenuse (= the current
value of the function F, whose projection we began with), a big sum of
... sines and cosines, ie. Fourier’s world.

So the world of waves and the world of orthogonal coordinate sys-
tems are the same world. It is in the latter that we will connect to compu-
tation. The connection is this: let each dimension correspond to the state
of some process, where all these processes a,b, c, . . . ,ab, ac,. . . , abc, . . .
are notionally independent (think orthogonal), though interacting other-
wise freely and concurrently. 1 Looking at the ongoing Heracletian flurry
of process-state evolution in such a system, the high frequency Fourier
bands correspond to short-term, fine-grained details, and low frequency
bands to long-term symmetries and global developments. These cross-
summed Fourier bands constitute the world of qualia — the feeling of

1 In the geometric (Clifford) algebra over Z3 � t0,1,�1u used here, 1-vectors are pro-
cesses with one bit of state, �1, whence an m-vector has m bits of state. For concurrent
processes a,b write a�b; when a,b interact write ab; ab too is a process with external
appearance �1. And so on. NB: ab � �ba � ?�1.



michael manthey 3

(eg.) redness vs. the optical frequencies detected by individual retinal
cells.

We posit that awareness, and consciousness as awareness of aware-
ness, are both on-going self-preserving resonances in this hierarchical pro-
cess structure ... is the computational version of the universal wave func-
tion, having both discrete and wave-like elements and properties. Al-
though we don’t show it here, the overall mathematical structure of the
paradigm is Up1q � SUp2q � SUp3q � SOp4q; see [8].

A not-too-misleading analogy is the relationship between a com-
puter’s operating system and the myriad processes it attends to. The
operating system corresponds to a space-like computation, which ex-
presses the causal potential (what events could happen next), whereas
the sequential processes it is manifesting correspond to what goes on in
Classical 3+1d.

We note that in Bostrom’s terminology [5], space-like computation
is a "slow build" technology (because it works bottom-up), which is a
very desirable trait considering that space-like computations are self-
organizing.

In the following, §2 and §3 provide background information, whereas
the new technology is presented beginning in §4.

2 definition and description of space-like computa-
tion

A space-like computation S is characterized by the following properties:

2.1. A space-like computation is distributed, which means that the entire
system, consisting of a potentially very large number of concurrent, in-
dependent but interacting entities, exhibits coherent global behavior with
little or no centralized control. The exact technological criteria for how
to design and build distributed systems in general have proven elusive,
which lacuna the present invention fills.

2.2. A space-like computation is self-organizing, meaning that given some
method and the necessary surrounding environmental inputs, that method
will - over time - assemble these inputs into a coherent entity of discrete
units that interacts with that environment in a stable fashion. How to
design self-organizing computations is a current topic of high-profile
research, which the present invention advances.



4 out of the box : self-organizing awareness

2.3. A space-like computation is hierarchical, meaning that the self-organization
includes the creation of new discrete units - representing combinations
of (combinations of ...) the initial units - that themselves become fod-
der for the self-organizational method. Hierarchy is a universal and well-
proven technological tool to control conceptual complexity, a tool whose
use is found across the industry, from programming languages to data
bases to communication protocols. Uniquely, this hierarchy is that of the
calculus (ie. integration and differentiation), but in the geometric idiom
of boundaries and co-boundaries.

2.4. A space-like computation is not Turing-limited, meaning that a true
space-like computation cannot be simulated by a universal Turing ma-
chine, which is by definition limited to sequential computations (in-
cluding parallelism). This is the topic of the Coin Demonstration below,
which gives an easily understood counter-example. It is widely thought
that Turing’s theorems prove that all computation is sequential in princi-
ple, so the present invention is strongly innovative.

2.5. A space-like computation is meaningless unless connected to, and in-
teracting with, a surrounding environment because it then cannot grow.
As opposed, say, to a sequential computation that computes the value
of π, which computation presumably would find genuine meaning in its
solitary endeavor, its world being complete.

2.6. A space-like computation uses a broadcast/listen communications dis-
cipline. ie. broadcast one’s own state and listen (ie. react) accordingly to
others’. The reason for this is that the alternative, a request/reply disci-
pline, is inherently functional in character, since it implements y � fpxq:
“Request that f do its thing on x and reply with the result”. But one
man’s y is another man’s x, so z � gpyq is also a possibility. So then
gpyq � gpfpxqq, and the sequence first-do-f-then-do-g is namely sequential,
f;g, ie. time-like. This is namely how contemporary computer systems
are organized. In contrast, a space-like computation assembles the steps
in its sequential processes on-the-fly, as described in §6. Contemporary
technology largely ignores broadcast/listen protocols namely because
they don’t fit the dominant y � fpxq organizational paradigm.

As described in the provisional filing [1], it is possible that some
space-like computations might be[come] self-aware, but this is not a con-
stituting property.



michael manthey 5

3 the fundamental reasoning behind space-like com-
putation

The fundamental reasoning underlying this (and earlier) patents [2,3] is
best explained via the following Coin Demonstration.

The following Coin Demonstration clarifies.

act i A man stands in front of you with both hands behind his back. He
shows you one hand containing a coin, and then returns the hand and the coin
behind his back. After a brief pause, he again shows you the same hand with
what appears to be an identical coin. He again hides it, and then asks, “How
many coins do I have?”

Understand first that this is not a trick question, nor some clever play
on words - we are simply describing a particular and straightforward
situation. The best answer at this point then is that the man has “at least
one coin”, which implicitly seeks one bit of information: two possible but
mutually exclusive states: state1 = “one coin”, and state2 = “more than
one coin”.

One is now at a decision point - if one coin then doX else doY - and
exactly one bit of information can resolve the situation. Said differently,
when one is able to make this decision, one has ipso facto received one
bit of information.

act ii The man now extends his hand and it contains two identical coins.

Stipulating that the two coins are in every relevant respect identical
to the coins we saw earlier, we now know that there are two coins, that
is, we have received one bit of information, in that the ambiguity is resolved.
We have now arrived at the demonstration’s dramatic peak:

act iii The man asks, “Where did that bit of information come from?”

Indeed, where did it come from?! 2

The bit originates in the simultaneous presence of the two coins - their
co-occurrence - and encodes the now-observed fact that the two processes,

2 [ Think about it! Where did that bit come from? Thin air?]



6 out of the box : self-organizing awareness

whose states are the two coins, respectively, do not exclude each other’s
existence when in said states. 3

Thus, there is information in (and about) the environment that can-
not be acquired sequentially, and true concurrency therefore cannot be
simulated by a Turing machine. Can a given state of process a exist
simultaneously with a given state of process b, or do they exclude each
other’s existence? This is the fundamental distinction.

More formally, we can by definition write a� ã � 0 and b� b̃ �
0 [~ = not = minus] meaning that (process state) a excludes (process
state) ã, and similarly (process state) b excludes (process state) b̃ . 4 Their
concurrent existence can be captured by adding these two equations, and
associativity gives two ways to view the result. The first is

pa� b̃q � pã� bq � 0

which is the usual excluded middle: if it’s not the one (eg. that’s +) then
it’s the other. This arrangement is convenient to our usual way of think-
ing, and easily encodes the traditional one/zero (or 1{1̃) distinction. 5 The
second view is

pa� bq � pã� b̃q � 0

which are the two superposition states: either both or neither.

The Coin Demonstration shows that by its very existence, a 2-co-occurrence
like a� b contains one bit of information. Co-occurrence relationships
are structural, ie. space-like, by their very nature. This space-like informa-
tion (vs. Shannon’s time-like information) ultimately forms the structure
and content of the Fourier bands, eg. {all 2-vectors}.

Sets of m-vectors - txyu, txyzu, twxyzu, . . . - are successively lower
undertones of the concurrent flux at the system boundary x� y� z� . . .,
and constitute a simultaneous structural and functional decomposition
of that flux into a hierarchy of stable and meta-stable processes. The
lower the frequency, the longer-term its influence.

But where do these m-vectors come from?
3 Cf. Leibniz’s indistinguishables, and their being the germ of the concept of space: simulta-

neous states, like the presence of the two coins, are namely indistinguishable in time.
4 This is the logical bottom, and so there are no superpositions of a/ã and b/b̃: they are 1d

exclusionary distinctions . Superposition first emerges at level 2 with ab via the distinction
exclude vs. co-occur.

5 Since x̃ is not the same as 0x, an occurrence x̃ is meaningful; in terms of sensors, x{x̃ is a
sensing of an externality of x, not x itself.



michael manthey 7

act iv The man holds both hands out in front of him. One hand is empty,
but there is a coin in the other. He closes his hands and puts them behind his
back. Then he holds them out again, and we see that the coin has changed hands.
He asks, “Did anything happen?”

This is a rather harder question to answer. 6 To the above two concurrent
exclusionary processes we now apply the co-exclusion inference, whose
opening syllogism is: if a excludes ã, and b excludes b̃, then a� b̃ ex-
cludes ã� b (or, conjugately, a� b excludes ã� b̃). . . . This we have just
derived.

The inference’s conclusion is: and therefore, ab exists. The reasoning
is that we can logically replace the two one-bit-of-state processes a,b
with one two-bits-of-state process ab, since what counts in processes is
sequentiality, not state size, and exclusion births sequence (here, in the
form of alternation between the two complementary states). That is, the
existence of the two co-exclusions pa� b̃ q | pã�bq and pa�bq | pã� b̃ q
contains sufficient information for ab to be able to encode them, and
therefore, logically and computationally speaking, ab can rightfully be
instantiated.

We write δpa� b̃q � ab � �δpã� bq and δpa� bq � ab � �δpã� b̃q,
where δ is a co-boundary operator (analogous to integration in calculus);

differentiation is the opposite, ab BÑ a� b . A fully realized ab is, we
see, comprised of two conjugate co-exclusions, a sine/cosine-type rela-
tionship. Higher grade operators abc, abcd, ... are constructed similarly:
δpab� cq � abc, δpab� cdq � abcd, etc.

We can now answer the man’s question, Did anything happen? We
can answer, “Yes, when the coin changed hands, the state of the system
rotated 180o: abpa� b̃qba � ã� b.” We see that one bit of information
(“something happened”) results from the alternation of the two mutually

exclusive states. [The transition a� b δ−Ñ ab is in fact the basic act of
perception, called the first perception, subsequent meta-perceptions being
derivative.]

Summarizing, every Action in a space-like computation carries the above-
described semantics, because thay are all based on co-exclusion.

6 What makes it tricky is that if at the same time as the man hides the coin he has shown
you, you walk around to his back side (be careful how you do it), then it would look to
you like nothing happened at all, vis a vis the coin, when he shows it again: it’s still in the
same place relative to you.



8 out of the box : self-organizing awareness

4 primitive functionalities

Our claims derive from the innovations described in this and the follow-
ing sections. The attached TLinda code in the Appendix specifies only
the minimal functionality, ie. a minimal “suggested implementation” to
achieve a space-like computation.

4.1 novel concurrency-control operations

A space-like computation is easiest to specify using a coordination lan-
guage, in our case TLinda [1], which for good reason is the most popular
programming language in Tlön. A coordination language is wholly con-
cerned with coordinating the interaction of concurrent processes, here
called threads.

Consequently, TLinda has no facilities for arithemetic calculation, al-
though it retains the usual control-flow facilities: if-then-else and the loop
constructions while-do, repeat-until, and (novel) forever-loop; interestingly,
only forever-loop is actually used.

TLinda derives from the Linda language, arguably the originator of
the idea (1985, [6]), which postulates a global tuple space TS with four
operations on a tuple T = [�eld1 , �eld2 , ...]: Out(T), Rd(T), In(T), Eval(T).

We now describe these standard Linda operations.

Out(T) makes T present in TS .

Rd(T), if T ’s form matches that of a present tuple in TS , will then ac-
cordingly bind T ’s variables to the corresponding fields of the match.
Otherwise the Rd blocks the issuing thread until a tuple matching T

shows up in TS .

In(T) is the same as Rd(T), except that it also removes T from TS under
mutual exclusion. The latter assures that one can create a synchronization
token when necessary. Otherwise, each thread manages its own tuples,
which once allocated remain so - only a tuple’s presence counter (never
  0) indicates its availability.

Finally, Eval(T) treats tuple T as the code-descriptor of a thread-body
to be executed, and a new independent thread is spawned. There is no
sense of Eval(T ) as a function that will return a value to the thread that
issued the Eval (or any other thread, for that matter).



michael manthey 9

To these classic Linda operations TLinda adds Co U,...,V and NotCo

U,...,V and variants AntiRd , AntiCo and AntiNotCo. These test for and block
on (wait for) the co-occurrence or lack thereof, respectively, of the tuples
U,...,V in TS . AntiRd blocks on the presence of U alone.

Each of these has a “one-shot” predicate version - Rdp, Cop, NotCop,

AntiCop, and AntiNotCop - that performs the usual operation (if possible,
and no blocking) and returns a True/False indication thereof.

Finally, TLinda has a special construction - Event Windows (EW ) [3] -
for efficiently discovering co-exclusions among tuples, which are turned
into Actions (think m-vectors, m ¥ 2). Recognizing that m-vectors can
themselves be the subject of an EW’s focus provides the self-organizing
component of a space-like computation. Claimed in [2,3].

Thus the overall style of the computation derives from the utterly
concurrent associative match of tuples (expressing current process states,
cf. broadcast) in a global space, combined with the inbuilt synchronization
properties of the tuple operations themselves.

4.2 not all sensors need have effectors

A sensor is a TLinda object that converts some phenomenon in the sur-
round into a binary signal, where +1 indicates that whatever the sensor
senses is currently present in TS , and -1 means that whatever it senses is
currently absent from TS. 7 The Z3 � t0, 1, 2u � t0, 1,�1u number system
can clearly be generalized to Zn or even the real numbers R, but this
comes at the expense of mathematical tractability, that is, the ability to
prove that a given space-like computation does what is claimed it does.

A computation invokes an Effector (E) to influence its environment,
and is defined in terms of a sensor s that detects the effector’s effect on
the surround: s E−Ñ �s � s̃. More complicated effectors can easily be
defined using this template.

It follows naturally that in space-like computations, sensors will vastly
outnumber effectors, as it is the number of sensors n that determines
the amount of information that can be learned, which is of order Op2nq,
whereas (in principle) effectors consume information.

7 A zero value from a sensor indicates an error or exception, not least because Void is not a
’value’. Also, sensing is to be distinguished from measuring: 1�x vs. �1�x.



10 out of the box : self-organizing awareness

4.3 space-like computation is fundamentally non-numerical

Unlike virtually all time-like computations, a space-like computation
does little or no arithmetic. Nevertheless, although not part of the main
thrust, it is inevitable that some arithmetic must be performed. TLinda

can simply be expanded to include it, and/or it can be simulated by a
space-like computation, for example one that maps the binary number
10011 into the “binary” hierarchy �abcde�abcd�abc�ab�a via the
mappings 1 ÞÑ � and 0 ÞÑ �. Another possibility is to define special-
purpose Actions that respond to requests for arithmetic calculations of
various kinds.

4.4 to save/restore a space-like computation

It is possible to record co-exclusions and Actions as they occur, which
record can serve as a means to restore or clone a given space-like com-
putation. However, keeping in mind the No-Copy theorem of quantum
mechanics, the restored or cloned computation must necessarily differ
from the original because the particular internal state at the time the
latest item was recorded must also be preserved, which computation
(�dump�) must therefore take place outside of the space-like computation
that is being copied. Thus the procedure consists of the two steps: record
continually, and when desired, dump. The restore operation then uses this
dump to re-establish the structure and state of the interrupted computa-
tion.

4.5 equivalence classes as “units”, as sensors , as goals .

Every Action is labelled with its level and its grade therein, and perhaps
other categorical information, that can identify the Action as the member
of a given equivalence class of Actions. An Action’s level is based on the
number of co-exclusions beneath it in the hierarchy. An Action’s grade 8

is one of t1, 2, 3u and higher grades do not exist (see §5, below) in the
suggested implementation.

Examples of such categories are “all Actions with grade 2mod4”,
or “all Actions with [level,grade] � r12, 3s”. These categories correspond

8 A 1-vector a has grade 1, a 2-vector ab has grade 2, etc. A scalar number like �1 has
grade 0.



michael manthey 11

to various frequency bands as established by Parseval’s Identity. Ev-
ery such category can be represented by a single Action whose external
state (spin) is determined by some property of its constituents, for exam-
ple the sum of their spins in Z3 arithmetic. These Actions can then be
treated like any other.

5 use of event windows

Earlier patents [2,3] specify that in principle, any tuples in Tuple Space
may be co-excluded to form Actions - which is what Event Windows
effectively do (namely δ) - but give no hint of which tuples it is best to
focus on. With efficient hardware and software implementation of large
systems in mind, the following innovations 9 optimize this generality:

5.1 TLinda’s novel Opposite operation specifies that the two opposite
spin values of a newly formed Action are not themselves to be co-excluded
(as this would be redundant, though perhaps thinkable in some research
context). This constitutes a simple but crucial optimization.

5.2 When instantiating an Action (ie. implementing δ), ensure that
its two constituent boundaries B1,B2 (“parent nodes”) do not share any
sensor sx. That is, require that B1 X B2 � 0. This is efficiently accom-
plished by recording each constituent sensor si in a list associated with
the given Action at the time of instantiation. Thus, at any level, the Ac-
tion’s list contains the names of all of the sensors si P tsu that actually
constitute that Action. Sensors, being the bottom level, have no parents.
B1,B2 , usually themselves being Actions, will possess such lists and
their intersection is thus easily computed. If B1 X B2 � 0, then no Ac-
tion is instantiated. (This is not an error, just a semantically disallowed
combination, because it mis-states the effective level and grade of the
Action.)

5.3. When instantiating an Action, emit a tuple that indicates that it is
a top-node, ie. has no children. Complementarily, remove any tuples that
mark the Action’s parent nodes as being on top.10

5.4 An Action of grade n can express 2n�1 distinct co-exclusions.
This means that there can, in principle, come to exist 2n�1 allocated and
executing instances of the given Action. These instances must then fur-
ther engage in a mutual-exclusion protocol to ensure that only one of

9 The underlying mathematics is novel, and so there is no prior art.
10 Cf. [4] : Corm thread, p.3.



12 out of the box : self-organizing awareness

them is in play in a given context. The first of these outcomes is waste-
ful and the second complex. To avoid both, the Action’s code should
specify/control all 2n�1 alternatives in one thread, which thread’s very
sequentiality has the pleasant side-effect of automatically yielding the
desired mutual exclusion.11 It is a design decision whether to instantiate
all 2n�1 instances on the first Event Window hit, or only when an Event
Window hit specifically prompts.

5.5 To ensure both stable operation and tractable mathematical se-
mantics (thus allowing formal proof-of-function), Event Windows shall
be employed as follows:

Notation: EWpp,qq, where p,q ¡ 0, specify two vectorial grades whose
corresponding Actions’ names and spins are to be noted in the Event
Window, and which thus can come to be co-excluded to form a new
Action.

5.5.1. EWp1, 1q, which co-excludes entities with grade 1mod4, creating
an Action with grade 1 � 1 � 2mod4. For example, δpa,bq ÞÑ ab, =
grade 2.

5.5.2. EWp1, 2q, which co-excludes entities with grades 1mod4 and 2mod4,
for example δpa� bcq ÞÑ abc, = grade 3.

5.5.3. EWp2, 2q, which co-excludes entities with grade 2mod4, for ex-
ample δpab� cdq ÞÑ abcd, = grade 4. The sign of abcd is then mapped
to a (conceptually new) 1-vector, ie. grade 1. This 1-vector represents
abcd.

5.5.4. EWp2, 3q, which co-excludes entities with grades 2mod4 and 3mod4,
for example δpab� cdeq ÞÑ abcde, = grade 5. The sign of abcde is then
mapped to a (conceptually new) 1-vector, ie. grade 1. This 1-vector rep-
resents abcde.

5.5.5. EWp3, 3q, which co-excludes entities with grade 3mod4, whence,

similarly, δpabc�defq ÞÑ abcdef = grade 6 mod4Þ−Ñ grade 2, and abcdef is
similarly replaced by a representative 2-vector on level Lvl+1 with roots
in its two 3-vector parents on level Lvl.

5.6. EWp1, 3q will be disallowed in most applications because it deals
in conditional facts - things that might or might not occur or be ’true’,

since the co-exclusion a� bcd | � a� bcd δ−Ñ abcd implies that when

11 The TLinda code shown in the accompanying document does not do this, for clarity and
brevity.



michael manthey 13

a indicates ’not present in the surround’, the reality-status of abcd be-
comes dubious. It characterizes speculative thought of the kind found in
scientific endeavor, speculations, day-dreams, fantasies, conspiracy theo-
rizing, and the like. In the lowest tier, 1� 3 is identified with dark matter,
and is (roughly) the square root of 2� 2-built spacetime [because rotated
90o] ... most products of such 3� 1 −Ñ 4 elements are zero, but a mi-
nority map to 2� 2, eg. pa� bcdqpb� acdq � �ab� cd (and curiously
pb � acdqpa� bcdq � ab � cd. We call this relationship, which is a lit-
eral information-transformation mechanism, the Keyhole Identity for how it
connects time and space.

Thus our hierarchical construction rises in tiers of four levels, cor-
responding to grades 1mod4 through to 4mod4. These tiers connect the
quantum world to our every-day world. The “classical” sequential world
and the quantum mechanical world are present in every tier, as follows.

Note that all possible co-exclusions up to grade 5 are considered,
and chief among these are the 3d quaternion triples tab,bc, cau of SUp2q,
which are the 1�1 co-exclusions; and the 2�2 4-dimensional tauquernion
triples tab� cd,ac�bd,ad�bcu, underlying SOp4q, giving 3+1d space-
time; and the 2� 3 tauquinion triples ttab� cdeuu whose variants make
SUp3q, the seat of electro-magnetism. That is, the entire bubble-up and
trickle down chain passes through (ie. is successively rotated by) three
distinct representations of the quaternions, and only these ... everything
is made out of space. This, along with co-occurrence’s resonance with Leib-
niz’ construction of space12, is the reason I call this kind of computation
space-like.

These functionalities will all likely be implemented in the same mod-
ule (the Corm), and activated when that module’s Event Window discov-
ers a new co-exclusion. This table summarizes:

pairs δppairq newlevel

3mod4, 3mod4 ù 6 � 2mod4 ×
2mod4, 3mod4 ù 5 � 1mod4 ×
2mod4, 2mod4 ù 4 � 0mod4 ×
1mod4, 2mod4 ù 3 charge . Ó
1mod4, 1mod4 ù 2 spin

6ÐÓ
0mod4, 1mod4 ù 1 existence

4,5Ð

12 Even though two things are indistinguishable [eg. co-occurring events are indistinguish-
able in the time domain] one still knows there are two because they are distinct. Therefore
there is a distance separating them. Place a metric on this distance relationship and you
have “space”.



14 out of the box : self-organizing awareness

The top-most “level” of the Action hierarchy is a dynamically chang-
ing set of Actions, namely those that (so far) have no “child” nodes.
Once these Actions are co-excluded with each other, the resulting Ac-
tion, a new child, replaces its constituent parent Actions in the Top-Most
club.

Devote one or more Event Windows to the set(s) of top-most Actions.
These Windows provide a high-level view of the computation’s growth
and evolution, and as well an opportunity to steer these.

To delete an Action, delete also all upward (child) Actions that de-
pend on it. [Actions are only added via Event Windows.]

To merge two space-like computations P,Q, add P’s sensor set toQ’s,
and vice versa, whether literally or effectively.

6 how space-like computations satisfy goals

A space-like computation is first and foremost hierarchical. This hierarchy
is formed by Actions that are discovered and instantiated via the Event
Window mechanism (§5). The bottom-most level is the sensors of the
surrounding environment, expressed mathematically as 1-vectors. All
succeeding levels are m-vectors, m ¡ 1, insomuch as their constituent
Actions are combinations of 1-vectors. [The optimization that telescopes
mmod4 as described in §5 is ignored in this section, as it does not
impinge.]

Actions exist to carry out goals, which when successfully carried out,
end with the successful operation of one or more effectors, which prop-
agate the goal’s intent into the surrounding environment.

Goals arise from impulses, which originate (for present purposes) in
the environment.

The space-like computation that ensues upon the receipt of an im-
pulse “change x to x̃ ” assembles a set of changes to the environment,
these changes to be carried out in an order that achieves the desired
effect. An example is re-setting the state of a satellite, which has many
sensors and many effectors. Finding this set of changes and carrying
them out in the proper order is not so easily done!

Suppose for example that there are five different actions that can be
carried out. Then each step in the final plan must be, or have been, assem-
bled from these five different possibilities. This means that the number of



michael manthey 15

possible plans of n steps is 5n, an exponential growth. Worse yet, in any
realistic system - like a satellite - “five” is far too small, ... 50 effectors
and n � 500 steps are more likely, yielding 50500 possibilities! Obviously
searching for a workable plan in a space this size is a formidable task.

The following sections describe our novel and very efficient solution
to this problem.

6.1 optimizations to effect on-the-fly sequencing

The first optimization is to assemble plans on-the-fly rather than trying to
work it all out ahead of time: given that the environment will constantly
surprise, this is unworkable (cf. Stanford AI’s Shakey). Instead, therefore,
make only very simple plans for very simple situations, which are de-
ployed automatically. Anything more complicated is to be handled “up-
stairs”. This is the basis for the very successful subsumption architecture in
robotics [7], which emphasizes simple fail-proof bottom-level effectors
(eg. “seek light/darkness”, “follow the wall”, etc.). Anything beyond
these simple effectors is the job of higher-level modules, which are de-
signed and assembled on the same philosophy. One can rightly say that
a space-like computation’s self-organizing ability automates the structur-
ing and assembly of arbitarily complicated subsumption architectures.

The second optimization is to fight the exponential explosion of pos-
sibilities with the logarithmic reduction offered by hierarchy. A hierar-
chy of Actions - first Actions sitting directly above the system’s effectors,
then Actions sitting above and including these, etc - all deduced from the
environment’s observed behavior, is key. The Event Window mechanism
builds exactly such hierarchies, but as revealed in [2,3], that mechanism
is unselective and therefore does not scale well to large systems. This is
remedied by the present invention, as described in the preceding section
on the Use of Event Windows.

The third optimization is a specific way to use the Action hierarchy to create
complex many-leveled plans on-the-fly.

A plan is expressed in terms of goals to be achieved. A goal is a state
of S that S tries to achieve by carrying out the various actions that it is
capable of. 13 Usually the goal state is a set of sensor states, but it could
also be some more abstract state that corresponds to some higher-level
consideration.

13 Which includes the environment as reflected in its sensors.



16 out of the box : self-organizing awareness

There are two phases to this process, the bubble up of both sensory
information and introduced goals (ie. impulses) from S’s boundary to the
upper levels of hierarchy, and the subsequent trickle down of the resulting
goals of reaction. Both of these concurrent flows are the responsibility
of Actions, and all Actions behave identically in this respect. Thus, the
various threads constituting an Action are grouped into three main sets:

• Threads responsible for peering downward in the hierarchy for what
might have changed, and when a such a change occurs, update the
Action’s state accordingly, and bubble this change further upward
to its child nodes. This has two aspects:

– Bubbling sensory information up

– Bubbling impulses up (which triggers back-chaining)

• Threads responsible for back-chaining

• Threads responsible for peering upward in the hierarchy, looking
for downward trickling goals with this Action’s name. This again
has two aspects (if the Action is grounded 14):

– When such a goal appears, split it into goals on the Action’s
parent15 nodes.

– Instigate “firing” on any forward chain(s).

The TLinda code for all of these threads appears in the Appendix, which
code only specifies minimal functionality, a “suggested implementation”.

6.2 meta-effectors : impulses up and goals down

The bubble-up of sensor states is accomplished by the TLinda code for
Meta-Sensors, and is very straightforward. 16 This section (§6) therefore
treats only the upward propagation of introduced goals, called impulses,

14 Grounded means that the pre-conditions for the Action to succeed are currently met by the
environment; aka. Relevant.

15 Since the hierarchy is built bottom-up (cf. co-boundary), created nodes [ie. upward] are
child nodes, and below the child nodes are their parent nodes. Ie. the opposite of other trees
in computing, which are drawn with the root at the top, whence parent nodes lie above
their children.

16 Cf. Appendix, Object SenseEffect.



michael manthey 17

and the consequent downward propagation (trickle down) of goals of ac-
tual intent, ending at the level of individual effectors, which realize that
intent in the surround.

An impulse is introduced at some level of the Topsy hierarchy, which -
due the hierarchy’s self-similarity - we can denote as “the bottom” level
for present purposes. This “introduction” requests simple inversion in
the value of the sensor Xù X̃, where ˜ means “opposite of”. We use
either the algebraic forms p�1�Xq, |X| � 1, or the Tlinda tuple encodings
rÒ,X,NotXs for an impulse and r!,X,NotXs for a goal; in either case, X refers
to a sensor or meta-sensor.

6.3 example problem

To explicate further, consider the following Block World, with sensors:

Hand Hand@ Hand@ Hand@ Place A Place B Place C

Full/Empty a/not b/not c/not Full/Empty Full/Empty Full/Empty

h{�h @a{�@a @b{
�@
b

@c{�@c a{�a b{�b c{�c

This Block World consists of three places A,B,C that can each hold
max one block; a Hand that can be @ each of the places A,B,C; and the
Hand can be either Full or Empty.

The primitive effectors in the Block World are

• Hand Grasp/Release:

– grasp : �hÑ h + place xÑ �x ;

– release : hÑ �h + place �xÑ x .

• Hand Move1 Left/Right, eg. x,y change, z doesn’t: (17)

– @x Ñ �@x

– �@y Ñ @y

– @z Ñ @z

Previous to this, the computation has deduced the following Actions
(“|” means xor, with precedence less than +) :

17 Although this describes things as “to the left” and “to the right” etc, this is local to the
Hand, and not relative to Places A,B,C, whose local adjacency geography is unknown.



18 out of the box : self-organizing awareness

Hand at x and not at y: @x � @̃y | @̃x �@y
δ

=ñ @x@̃y Ø @̃x@y

Grasp/Release ON a,b, c:

a� h̃ | ã� h δ
=ñ ah̃Ø ãh

b� h̃ | b̃� h δ
=ñ bh̃Ø b̃h

c� h̃ | c̃� h δ
=ñ ch̃Ø c̃h

Grasp/Release AT a,b, c:

@a: ah̃� @̃a | ãh�@a
δ

=ñ ah̃@̃a Ø ãh@a

@b: bh̃� @̃b | b̃h�@b
δ

=ñ bh̃@̃b Ø b̃h@b

@c: ch̃� @̃c | c̃h�@c
δ

=ñ ch̃@̃c Ø c̃h@c

Block at x and not at y: x� ỹ | x̃� y δ
=ñ xỹØ x̃y. Eg. ab̃Ø ãb.

In the bubble-up phase, changes to (say) x are picked up by its co-
exclusions xy, xz . . . and sent further up the hierarchy. This applies to
sensors, meta-sensors, and meta-effectors. See the accompanying TLinda

code in the Appendix.

The problem we pose - to both motivate and illustrate the goal
generation algorithm - is a goal to move a Block from Place A to Place C.
That is, we issue the impulse to fill Place C, rÒ,�c, cs. Let us assume that
besides the above actions, the system S has learned the actions ab̃Ø ãb and
bc̃Ø b̃c, but not yet the action ac̃Ø ãc, so to accomplish r!,�c, cs it must
first move the block from a to b, and thence from b to c.

Thus if the corresponding goal simply echoes the impulse, which will
be a goal on c , namely r!,�c, cs, there is no explicit connection between c
back to a (where the block currently is), and therefore no basis for
issuing a subgoal to empty a (nor the latter’s natural subsequents).
Thus although all the necessary machinery is present, the goal will not
be fulfilled. The present algorithm solves this problem, which is of a
very general nature, and does so very efficiently.



michael manthey 19

6.4 problem solved

Propagating the initial impulse and translating it into various goals re-
quires establishing the missing connection(s) between the current state
and the goal state. This has both a horizontal and a vertical aspect.

The vertical aspect is the propagation of environmental impulses for
change, rÒ,X,NotXs, upwards in the hierarchy, which bubbling up is a cru-
cial aspect of space-like computation’s efficiency, since this reduces the
search space logarithmically. These up-bubbling impulses are ultimately
translated into goals that “tree out” as they trickle down and retrace the
trails of the impulses as they bubbled up. In so doing, they intersect the
horizontal aspect, as follows.

The horizontal aspect of impulse propagation is a distributed version
of back-chaining. Instead of thinking current-state-to-goal-state, see the
problem the other way around, as chaining from the goal-state backwards
to the current-state, and then use these (causal) paths that connect the
two.18 In either direction, of course, the possibilities tree out exponen-
tially, so it is critical to keep this explosion from impacting efficiency.
The trick is to use the intersection of the the vertical and horizontal trees.

Every level of the Action-hierarchy corresponds to such a “horizon-
tal” plane. Furthermore, as one ascends upwards in the hierarchy, a
level’s Actions’ effective grade increases (~doubles) at each step, and
the computation’s reasoning becomes correspondingly and increasingly
global in scope and consideration.

When an Action Me=XY notices an impulse rÒ,X,NotXs, where X is
one of Me’s two constituent parent nodes, and Me is not Grounded (aka.
not Relevant ... can’t ’fire’ in its current state), it issues an impulse rÒ,Y,NotYs
that asks, Is there any Action (on this level) that flips (X's partner) Y as
part of its co-exclusion (because then it can flip X by itself)? Every Ac-
tion has a thread that namely looks for these backlinking impulses, and
finding one, adds itself to the chain in the same way: this is the back-
chaining.

This continues (in concurrent distributed fashion) until the chain
reaches Actions that are grounded, which means that the Action in ques-
tion could (if allowed) initiate the chain of effector activations that would
eventually reach the instigating Action rMe,X,NotXs, because the current

18 Cf. MetaEffector Thread 2 – Accept Back-chain Triggers to Me.



20 out of the box : self-organizing awareness

state of the environment matches the state required to (probably) suc-
ceed. 19 The algorithm, being a coordination algorithm, avoids creating
unnecessary copies of things, eg. in the case of overlapping or out-dated
chains, by storing such state information as thread state (together with
the surround) rather than memory state, as is typical of conventional com-
putations.

However, this back-chaining process does namely not allow such
chains to begin execution yet, because there can be many such chains
- all possible routes from B to A - which if all executed at once would
create much wasted effort or worse. Rather, the backward chains - in
every level on the way up - are kept in abeyance until grounded higher-
or top-level nodes issue the required goal(s). These goals then trickle
down, tree-ing out, and any grounded Actions that they meet are only
then allowed to activate their parents’ (meta-)effectors. The hierarchical
stacking of the chains ensures that sub-goals are emitted in a coherent
order (and if not, then learning will eventually remedy this).

An impulse or back-chain that has reached the Action Me, and Me

is not grounded, results in both the further propagation of the back-
chain and the bubbling up of the impulse, this latter in the form of a
new impulse, this time on Me itself: MeImpulse = ['^', XY, -XY]. This in
turn triggers back-chaining on the next level. When a top node - one
with no child - is reached, the code (as shown) just turns the impulse
into the requested goal and sends it down. Clearly this should in many
cases be expanded into some more nuanced decision, probably including
humans.

It seems an obvious optimization to note the Action-pairs that arise
as a back-chain is transitted forwards. We use the tuple r"D; " ,AtoBs to
indicate that the two Child actions A,B are to be executed in strict order:
first A then B, written A;B. Indeed, increment a counter each time this
pair is used, and use this to prioritize alternative plans! Clearly, this will
eventually create long chains of “good” plans, and hierarchies thereof.
A further optimization! Unfortunately, this solves a non-existent problem,
as any given pair will always be chosen in the same situation anyway, and
the choice algorithm is very efficient. So nothing is gained. Furthermore,
the flexibility provided by the space-like hierarchy - which gathers all the
relevant aspects of a situation - is usurped by a myopic, less flexible, and
possibly out-dated time-like solution. Nevertheless, this functionality is
indicated in the attached TLinda code (but commented out).

19 Reality requires a more limiting criterion, eg. a chain-length threshold, but in the interests
of clarity and brevity, we choose not to clutter the code with such details.



michael manthey 21

Backchain links

Impulse

Bubble Up/
Trickle Down paths

A ��gurative� illustration of the backchain, bubble up, and trickle down paths
caused by an initiating impulse, The network recon�gures itself automatically
as goals are ful�lled and new impulse con�gurations arise. It is tacitly assumed
that there are MANY, perhaps competing, impulses and goals present.

There can, in principle, also be impulses, goals, actions, etc. for Rel-
evance and even goals. However, such generalizations are semantically
very wild, and as well mathematically fraught.

Geographically distant Actions, and their Child and Parent nodes,
are connected by a subscription mechanism that automatically propa-
gates given state changes between such nodes, whether these be sensors,
impulses, goals, effectors, or control tuples eg. Relevant.

Although the concept of “recalling something from memory” per se
is an implicit part of the operation of a space-like computation, it is
nevertheless useful for users to be able to simply request some particular
computation or fact. The former is largely the province of impulse and
goal propagation, as described; but the latter - “fact” recall - needs a few
more words.

To recall a “fact” means to generate an impulse for a particular state,
such that the up-bubbling Relevance indicators are the focus of a devoted
Event Window, wherein the desired information is to be found.



22 out of the box : self-organizing awareness

Discovery - finding novel processes: by using the contents of an Event
Window that is tied to a recall operation, a space-like computation can
insert related subgoals to be carried out simultaneously. With trial and
error/experimentation, the lacking concepts/nodes will be knitted to-
gether. One can also pursue this problem from the Fourier side, by hav-
ing as a goal the generation of a particular resonance.

7 security

Because a space-like computation derives from, and is reactive with, its
environment, an external process can only approach it on the former’s
own terms. Otherwise the space-like computation will not react at all.
This is the basis for securing the integrity of a space-like computation
relative to its environment.

Relative to a space-like computation’s interior, individual communi-
cations (namely individual tuples in TS) with other entities can be en-
crypted. Encrypted or not, such communications are so microscopic in
their scope and atomic in their content - typically just a �1 value and an
anonymous tag - as to be of little value anyway. It is only in the dynamic
event structure erected and maintained by the space-like computation
that actual meaning lies.

7.1. The basic principle is that information about a space-like compu-
tation - call it S - may only be obtained via interaction. Since S creates
(internal) information through its interaction with its surround (cf. Bub-
ble Up), which surround here is an interrogating process P?, the latter
will never get more information from S than S gets from P?. Only if P? is
a space-like computation like S can the information exchange be equal.

7.2. Thus information (from interaction) Bubbles Up inside S before
Trickling Down in the form of a reaction (in the shared environment) that
it is up to P? to perceive. Such latter perceptions are then necessarily P?’s
only source of information about S.

7.3. In particular, the names of the Actions (whose hierarchical arrange-
ment constitutes S) are in principal unknown to P?, since only behavior
(“motion”) is externally visible. Lacking these names, P? cannot hope
to penetrate S. To ensure, additionally, that Actions remain anonymous
relative to each other within S, an Action’s name NA is created from
its constituent boundaries B1 and B2 as NA � fpB1,B2) where f is a
so-called trap-door function that loses information, whence B1 and B2



michael manthey 23

cannot be derived from NA. [We suggest that f � xor, a common and
efficient hardware operation. Choosing f to be an encryption (which is
by nature reversible) would constitute a security weakness.]

In this way, only the Action itself knows its parent nodes, and no
other Action can, because the names B1 and B2 are only known within
the Action, and the names B1 and B2 were themselves earlier created
in the same way. And this is true of all Actions. Indeed, with little over-
head, the Bi can be assigned new names every time they are co-excluded.
Giving the sensors constituting S’s boundary with its surround random
names then ensures, topologically, a basic inscrutable defensive perime-
ter. Such code-naming strategies combined with the formal power of the
underlying (Clifford) algebraic semantics endows space-like computa-
tions with uncommonly strong and fundamental architectural support
for building stable and secure systems.

This is especially comforting when one recalls that space-like compu-
tations are self-organizing, whence all this security occurs automatically,
not least because all Actions obey the same interaction protocols. An Ac-
tion that doesn’t obey these will have a very hard time interacting with
any other Actions because it doesn’t know any of their names.

7.4. As a further measure against rogue TLinda code, each tuple is
to be equipped with one or more special bits that will deny-match-to-
unbound-fields. That is, we extend the standard minimal Linda tuple
match (namely on typed fields) such that “wild card” matches are not
allowed on designated fields and/or tuples. This simple measure short-
circuits “fishing expeditions”.

7.5. P? causes S to react by issuing an impulse rÒ, sÑ s 1s that requests
that S change the state of (environmentally shared) s to s 1. This impulse
Bubbles Up (§6) until it meets an Action (one or more) that can satisfy
it, which results in the issuing of a corresponding goal (each), which
Trickles Down, ultimately resulting in the effector goal r!, sÑ s 1s.

The transition s Ñ s 1 is the only thing that P? sees. Exceptionally, S
may advertise a higher-level Action (ie. NA vs. the sensory boundary
tsu) as available to external impulse. However, since Action NA is the
goal-fulfiller, the impulse does not propagate further up the hierarchy,
thus implicitly limiting P?’s access to S’s interior to what S allows, and
no more. One can further tag such impulses as external and limit or
forbid collateral activations accordingly.



24 out of the box : self-organizing awareness

8 miscellaneous

8.1. An avatar is a software structure that represents a (usually human)
entity to the remainder of a computer system. Most commonly, people
employ avatars to represent them in video and on-line games, but the
concept is very general, both for the user (who has great flexibility in
choosing their representation) and the system designer (who can design
a safe, robust, general purpose and generic avatar interface that is used
by all).

Such an avatar structure is realized in a space-like computation via a
suite of system-supplied Actions whose sensors and effectors are the vir-
tual world to which it is interfacing, and whose motivations are rooted
in a space-like computation that is being inhabited by the user (who
is passing impulses up to its avatar suite, and awaiting and decorating
these freely). Avatars can, whole or in part, be driven by software, but
must always be anchored to a human individual, so there is someone to
whom responsibility for its actions can be assigned.

8.2. Goal-driven processes can deadlock or livelock, both which lock a
set of processes in a permanent closed cyclic pact. Via Parseval’s Identity,
one can view the operation of a space-like computation in the wave do-
main. “Dead-spots”, “lines” or some other characteristic pattern in the
spectrum of the computation will then indicate the presence of a dead-
lock or livelock, and as well identify the Actions participating in the lock.

The lock can be broken by temporarily removing (or otherwise silenc-
ing) the goals or impulses involved, and then restablishing same (eg.
according to established principles of contemporary operating system
design) after a fitting period of time. Since most such locks are “un-
lucky”, they will likely not re-appear after such an interruption. A sub-
tler method is to exploit back-chains that circle back to their originator.
This condition can be sensed by a dedicated thread and used to trigger
recovery.

8.3 The mental mechanism that focuses on the most current events
is called short term memory (STM), and is subsumed by, and therewith
generalized by, the event window mechanism.



michael manthey 25

references

1. USPTO #14/732,590, filed 2015: Space-like Computation for Computa-
tional Engines

2. Manthey, M.J. 1994 patent, on Co-Exclusion (expired)

3. Manthey, M.J. 1998 patent, on Event Windows (expired)

4. See Appendix.

5. Bostrom, Nick. Super-intelligence - Paths, Dangers, Strategies. Oxford
University Press, 2014.

6. Gelernter, David & Carriero, Nicholas.
. wikipedia.org/wiki/Linda_Programming_System

7. en.wikipedia.org/wiki/Subsumption_architecture

8. Manthey, M. “Awareness Lies Outside of Turing’s Box”, Proc. ANPA
2018.



26 out of the box : self-organizing awareness

A P P E N D I X: TLinda Source Code20

Notation.

A Tuple Name begins with Uppercase, Xxx, and is defined with square
brackets: Xxx = [...].

A tuple has some number of typed fields, for example Xxx = [integer

n, string "...", tuple Yyy].

Two tuples MATCH if all their fields match in both type and content.

A ? indicates a wild-card that matches any value (but the type must
match). For example: [3, T, "foo"] matches [?n, T, ?who].

A wild card variable ?... becomes bound to the matched field-value;
so from above, n=3 and who = "foo".

The tuple operations In, Rd, Co etc. have boolean-predicate versions
Rdp U,...,V, Inp U,...,V and Cop U,...,V . These are "one-shot" test oper-
ators. Thus Rdp, Inp and Cop return False and do not block if U,...,V
aren’t present.

An Action is defined by the tuple ['D',SomeState,OppositeState] and is
a set of MetaSensor and MetaEffector threads.

Goal tuples look like [' !', OldState,NewState]. Impulse tuples look like
['^',OldState,NewState].

All communication between threads is via the Tuple Space opera-
tions Rd, In, and Out.

Threads are never de-allocated. Rather, if a thread’s execution has
obviated its further existence, its further presence will be used to host
system-maintenance activities, eg. updating the graphical interface.

thread StartUp() Boot system up

begin

. Eval Sensor( ...�rst... ) ...

. Eval Sensor( ...last.... ) -- Instantiate the sensors

. Eval E�ector( ...�rst... ) ... � and

. Eval E�ector( ...last.... ) -- E�ectors.

. Eval Corm(1) -- Instantiate the initial Corm

. Eval UserInterface(...) -- Fire up graphical interface.

20 The more pedestrian modules are inherited from the original implementation and are
correct, whereas the new pieces (Corm, MetaSensor, MetaEffector), which constitute both
the novelty and core of the invention, have never run, and cannot be guaranteed to be
bug-free. The “connecting tissue” for these modules is to be inferred from the respective
parameter lists plus tuple space. Apologies for various loose ends.



michael manthey 27

. forever

. ...

. loop -- Service graphical interface

end StartUp

The code for a standard one-bit �1 sensor:

1 thread Sensor(X,Name,Bag) � X is a raw sensor tuple.
. �"Bag" is a user-de�ned sensor-category, cf EW's.

2 own

3 Flag = ['L',1,0] �This is a Screen#1, 0-level sensor.
4 Plus = [Flag,[X,+],Bag] �Sensor's
5 Minus= [Flag,[X,-],Bag] � phases; Goals on X:
6 PlusGoal = [' !',Minus,Plus] � Minus to Plus,
7 MinusGoal = [' !',Plus,Minus] � Plus to Minus

8 MinusBubble = ['^',Plus,Minus] � Flip new Plus to previous Minus

9 PlusBubble = ['^',Minus,Plus] � Flip new Minus to previous Plus

10 begin

11 opposite Plus, Minus � Short-circuit EW hit.
12 Out Minus � Sensor initially o� = X is not present

13 Rd X � Block til X shows up, presence = '+' and absence =
'-'.
14 forever

15 In Minus � Retract O�.
16 Out Plus � Indicate On.
17 AntiRd X � Wait for change.
18 In Plus � Retract On.
19 Inp PlusBubble
20 Out Minus � Indicate O�.
21 Out PlusBubble � Go back to Plus
22 Rd X � Wait for change.
23 In PlusBubble
24 Out MinusBubble
25 loop

26 end Sensor

The above Tlinda for Sensor (and other later code) is been cleared
of administrative detail. In principle (and beta-implementation fact), all
sensors run just this thread.

Similarly, effectors - entities that cause an associated sensor to change
- all consist of the following two threads. The first of these, just below,
establishes the grounding/relevance21 of the effector to the current state of
the system’s surround. For example, if the system’s Hand is Empty then it

21 Terminology: relevance has been replaced by grounded, as more precise and evocative.



28 out of the box : self-organizing awareness

can Grasp an object, but in this very state it cannot logically also Release an
object because there is none in the Hand. So the Hand is relevant (flag “R”)
for Grasp if it is Empty and irrelevant (flag “r”) if not. The goal for Grasp is
namely [' !',Minus,Plus], meaning to cause the Empty Hand to be non-Empty.
The code below is independent of the particular �values assigned to S

and NotS - they need only be opposites.

1 object Make_E�ector � Implements e�ector relevance and physical e�ect.

2 thread E�ector(S,NotS,X) � X is the raw/physical e�ector id.
. � S/NotS = corres internal-sensor states
3 own

4 HereIAm = ['D',S,NotS] � Advertise ourselves.
5 Rel = ['R',S,NotS] � X's relevance
6 IrRel = ['r',S,NotS] � and lack thereof.

7 external

8 HoldS = [' !',S,S] � => don't change S => Irrelevance

9 begin

10 spawn E�ect(S,NotS,X) � Start partner thread (below)
11 Out HereIAm � Advertise ability S �> NotS.
12 Out IrRel � Initially irrelevant.

� The uninhibited use of Inp and Outp below is exceptional!

13 forever �Establish current Ir/Relevance, 4 cases:

14 if Cop S, HoldS then � Both S & HoldS present.
15 Inp Rel
16 Outp IrRel � Show Irrelevance.
17 AntiRd HoldS � Block till HoldS disappears.
18 end

19 if Cop NotS, HoldS then � No S, but HoldS present.
20 Inp Rel
21 Outp IrRel � Show Irrelevance.
22 NotCo NotS, HoldS � Block till one is gone.
23 end

24 if Rdp S and not Rdp HoldS then � No HoldS, but S present.
25 Inp IrRel
26 Outp Rel � Show Relevance.
27 AntiCo S,HoldS � Block till both are gone.
28 end

29 if not Rdp NotS and not Rdp HoldS then � Neither.
30 Inp Rel
31 Outp IrRel � Show Irrelevance.
32 Rd S � Block on S.
34 end

35 loop

36 end E�ector



michael manthey 29

The second effector thread, below, is tied to the preceding thread by
the latter’s Ir/Relevance tuples (lines 5,6; 26). Line 43 is the nub of the
matter: Co Rel, TriggeringGoal, S ties the relevance of the effector, Rel, to the
goal of inverting its state, TriggeringGoal, by insisting on their simultaneous
presence. [The additional presence of S avoids an obscure possibility that
I leave to the curious reader to identify.] When this occurs, a command
is output (line 44) to the physical effector to accomplish the specified
state change. Line 45 then blocks until line 43’s Co is broken by either S

changing (ie. the goal was successfully achieved) or the disappearance
of the inciting goal (line 46) which results in an attempt to retract the
command of line 44.

37 thread E�ect(S,NotS,X) � Propagates S �> NotS to physical e�ector.

38 external

39 TriggeringGoal = [' !',S,NotS]
40 Rel = ['R',S,NotS]

41 begin
42 forever

43 Co Rel, TriggeringGoal, S � Ready and wanted?
44 Output "(E:", &X, ")" � Yes ... achieve S.
45 NotCo S,TriggeringGoal � Wait till obviated.
46 if Rdp S then Output "(E:",&X," Oops)" � (Retract request X)
47 loop

48 end E�ect;

49 end Make_E�ector

The above code is the bottom level of our ultimate goal system. All
it really does is insulate the rest of the system from X’s realities, offering
instead a clean internal interface of idealized Sensors and Effectors.

===============

The self-organizing aspect is inspired by the Coin Demonstration,
especially the fact that there are two co-exclusions, a � b̃ | ã � b and
a� b | ã� b̃, both of which allow the instantiation of a new action, ab.
The obvious implementation, good for either case, is

. Co A,B

. Co NotA,NotB

. eval Action(A,B,NotA,NotB)



30 out of the box : self-organizing awareness

But this approach must unfortunately specify which of the two co’s is
to come first, and much worse, must specify exactly which tuples A and
B are to be watched to (maybe) exhibit a co-exclusive relationship. Since
for n sensors this implies a minimum of Op2nq threads, this approach is
clearly not workable.

Instead, we introduce the idea of an event window (EW) of size ∆t
time units. Into this window are put (selected) tuple changes, with the
result that, to a resolution of ∆t, every tuple in the window has changed
its value simultaneously. Furthermore, since (say) A and B just changed
value, then before they did so they must have formed the co-occurrence
Ã � B̃. Thus every pair of tuples in the window is automatically a co-
exclusion! A tuple ages, and is discarded when its residence time has
reached ∆t, and if it is changing faster than ∆t, only the latest version is
kept.22 The opposite command (Line 9 in thread sensor above) prevents a
given co-exclusion from forming more than one action instance.23

Thus, the following Tlinda code implements the creation of actions
based on observed sensory input from the surround:

thread DiscoverActions(DeltaT)

. X: EW = [...]

. forever

. Rd X(A,B)

. eval MakeAction(A,B...)

. loop

That is, every time event window X finds a co-exclusion, it spawns a
thread, MakeAction, that will instantiate the further multiple threads (be-
low) that consitute an action before settling down to an unending exis-
tence as the action’s GUI hook. In this way, each of the two co-exclusions
is instantiated as an independent action, these being mutually-exclusive
dynamically via their relevance.

Also, each such action has a public face similar to our earlier sensor/-
effector pairs - the � orientation of ab (aka. its spin) translates to Tlinda

as a (meta-)sensor that is in every way equivalent to a primitive sensor.

22 If the sampling frequency f were 50ms, then 1
f � ∆t would be 20ms. ∆t is the uncertain-

ty/“Planck” constant for this window.
23 It’s not difficult to construct a situation where despite appearances only one of two sensors

in a pair actually changed, ie. the EW really only has a state and its conjugate. One can
worry about this, or just instantiate both co-exclusions, the latter being the more realistic
resolution.



michael manthey 31

That is, the instantiation of an action adds new sensors to tuple space,
which in turn can find themselves in event windows and forming even
higher-level actions. The actions so formed all use this same Tlinda code.

Thus, with very little “putting in by hand”, Topsy automatically
erects a coherent and interconnected hierarchy of wave-like actions. These
are themselves built out of mutual exclusions, with the result that the ac-
tions (ie. threads) able to be active at any given point in time by definition
cannot violate mutex requirements. That is, the execution regime implic-
itly supports flat-out concurrency.24

Here is the code that instantiates an action:

thread MakeAction(Parent1,Parent2,Lvl,NewGrade)
. own NewAction = [Parent1,Parent2,Lvl,NewGrade];
begin
. Inp [Parent1,"I'm on Top"];
. Inp [Parent2,"I'm on Top"];
. Out [NewAction,"I'm on Top"];
. eval MakePlusMinusTupleSensor(NewAction); -- Make NewAction's Sensor
. eval Object MetaSensor threads; -- Start up all the
. eval Object Bubble_Impulses_Up threads; -- threads that make
. eval Object Trickle_Goals_Down threads; -- up an Action. etc.

...
end MakeAction;

-------------------------------------------------------------------------������
-- META-SENSOR THREADS Bubble sensory data up --
-------------------------------------------------------------------------������
object MetaSensors NB: "Relevant" == "grounded".

-- An Action multi-instantiates these to manage its state, especially
-- as seen by other threads (cuz broadcasted via tuple space).

thread MetaSensor(S1,S2,State)
begin --Show MetaSensor's State based on S1+S2.
. forever
. Co S1,S2; --S1+S2 present
. Out State; -- => show State.
. NotCo S1, S2; --S1+S2 not present,
. In State; -- => remove State.
. loop;
end MetaSensor;

thread MetaSensorRel(S1,S2,S1Rel,S2Rel,On,O�)
--Shows On if S1 + S2 + (S1Rel | S2Rel) are present, else O�.

begin
. forever
. if Cop S1, S2 And Not AntiCop S1Rel, S2Rel then
. Out On; --Show On.
. NotCo S1, S2, S1Rel; --Await.
. NotCo S1, S2, S2Rel;
. In On; --Retract On.
. else Co S1, S2; --Await.

24 Tlinda's underlying thread management system cannot deadlock, but parts of the action
hierarchy can, reflecting conflicting user-demands (see below).



32 out of the box : self-organizing awareness

. AntiNotCo S1Rel, S2Rel;

. end ;
loop;
end MetaSensorRel;

3. Meta-E�ector threads: Bubble Impulses Up & Trickle Goals Down
-- This code does (X, Y) <--> (-X,-Y) Same 2x2 instances = one-half Action
-- OR (X,-Y) <--> (-X, Y) Code 2x2 for this half too.

object Bubble_Impulses_Up -- Bubbles Impulses up and Back-chains
. -- lower level to Current/Rel states
. -- "Sub" is one (=X) of the 2 parents
. -- of action XY => This thread x 2,

x 2.
external
. Sub = ['S', +/-, X], -- Current value of meta-sensor S.
. SubImpulse = ['^', X, -X] , -- Impulse to invert S.
. MeOnTop = [Me,"I'm On Top"] ; -- Me is Top of (its part of the)

hierarchy...
own
. SubGoal = [' !', X, -X],
. MeImpulse = ['^', XY, -XY], MeRel = ['R', XY, -XY],
. MeRel = ['R', XY, -XY] -- Ie. GROUNDED
. Merel = ['r', XY, -XY], -- Ie. NOT GROUNDED
. MeGoal = [' !', XY, -XY],

. BackLink = ['->', ?Predecessor, Me] ; -- Matches ANY predecessor.

begin -- Thread 1: -- Accept Impulse from Subaltern

. forever

. Co Sub, SubImpulse -- Await need DIRECTLY from
below.

. if Cop MeRel, MeGoal then -- I can do this directly:

. Out SubGoal -- Issue the sub-goal,

. NotCo Sub, SubImpulse, MeRel, MeGoal -- await developments,

. In SubGoal -- and retract sub-goal.

. else

. Out MeImpulse -- Bubble Impulse further up.

. Out BackLink -- Originate back-chain.

. NotCo Sub, SubImpulse -- When need disappears,

. In MeImpulse -- remove impulse for Me

. In BackLink -- and retract back-chain.

. loop

--thread 2: -- Accept Back-chain Triggers to Me = this Action
-- NB: The initial Rd binds just ONE Successor; any others piggy-back
-- on the Impulse it generates and back-chain from here automatically.

. forever

. Rd ['->', Me, ?Successor] -- Some successor seeks Me.

. if Rdp Merel Then -- We're not relevant...mebbe �x
this:

. Out ['^', NotMe, Me] -- Trigger an Impulse Bubble for Me.

. Out ['->', ?Predecessor, Me] -- Extend chain horizontally.

. AntiRd ['->', Me, ?Successor] -- Wait for all chain requests to

. Inp ['^', NotMe, Me] -- disappear, then retract Me-bubble

. In ['->', ?Predecessor, Me] -- and chain extension.

. loop
-- thread 3: -- React to goals from above
. Forever



michael manthey 33

. Rd ['->', Me, ?Successor] -- IF some successor seeks Me, AND

. Co MeRel, MeGoal -- If Grounded & Goaled, reverse

. Out SubGoal -- the chain & start its forward-execution.
-- Out ['D;', Me, Successor] -- Record TIME-LIKE action Me;Successor
. NotCo Sub, SubImpulse, MeRel, MeGoal -- Await developments,
. In SubGoal -- and retract goal.

. loop
--thread 4: -- What to do at the Top
. forever
. Co MeImpulse, MeOnTop -- If I'm at the (local) hierarchical top
. Out MeGoal -- Convert the Impulse to a Goal
. NotCo MeImpulse, MeOnTop -- NB: not MeOnTop drops the ball,
. In MeGoal -- or at least causes a hiccup.
. loop -- This is also the place for human control.

-- -- -- --

object Trickle_Goals_Down(X) --"Sub" is one (X) of the (two) constituents
-- of action XY => These threads x 2.

external
. SubImpulse = ['^', X, -X], -- Impulse from below to �ip X to -X
. XRel = ['R', X, -X], -- Action X --> -X is grounded
. Xrel = ['r', X, -X], -- is NOT grounded
. MyRel = ['R', XY, -XY] ; -- Action XY --> -XY is grounded
own

. SubGoal = [' !', X, -X], -- Goal to �ip X

. MeGoal = [' !', XY, -XY], ; -- Goal to �ip Me = XY "from above"
-- Thread 1: Issue Goal on Sub

. forever

. Rd MeGoal -- Wait til we're wanted.

. Co XRel, SubImpulse -- When Sub=Rel & Sub desire still there,

. if Rdp MeGoal then -- (and MeGoal still present)

. Out SubGoal -- issue goal on Sub.

. NotCo MeGoal, XRel -- Await developments.

. In SubGoal -- Whatever happened, SubGoal is obviated.

. loop

thread Corm(Lvl)
-- This code relies on the TLinda run-time system to ensure
-- only ONE instance of any given Corm (cf. parameter Lvl).
. Own CormEvtWin = [...Lvl, grade={1,2,3},...]; --De�ne ONE EW for entire Lvl
begin

. forever

. Rd CormEvtWin(...); -- A Hit de�nes Parent1 and Parent2

. NewGrade = Parent1.grade + Parent2.grade; -- Calc NewAction's grade

. if NewGrade = 4 and (Parent1.grade=1 or Parent2.grade=1)

. then skip; -- Disallow 3+1 Actions

. if ShareNodes(Parent1,Parent2) then skip; -- No shared parents

. else if NewGrade <=3 then

. NewAction = [Parent1,Parent2,Lvl,NewGrade]

. eval MakeAction(NewAction); -- Make new Action at same Lvl

. else



34 out of the box : self-organizing awareness

. if NewGrade = 4 or NewGrade = 5 then NewGrade = 1; -- mod4, mod5 thing

. if NewGrade = 6 then NewGrade = 2;

. NewAction = [Parent1, Parent2, Lvl+1, NewGrade];

. eval MakeAction(NewAction); -- Make new Action for
Lvl+1

. eval Corm(Lvl+1); --Make Corm for (new) Lvl+1 � system prevents duplicates

. inp(Parent1,MeOnTop); inp(Parent2,MeOnTop); � Parents lose top spot

. out(NewAction,MeOnTop) -- Child = NewAction is the new boss!
loop

——————————————————————


	1 Out of the Box: Self-Organizing Awareness
	1 Introduction
	2 Definition and Description of Space-like Computation
	3 The Fundamental Reasoning Behind Space-like Computation
	4 Primitive Functionalities
	4.1 Novel Concurrency-Control operations
	4.2 Not all sensors need have effectors
	4.3 Space-like computation is fundamentally non-numerical
	4.4 To Save/Restore a Space-like Computation
	4.5 Equivalence classes as ``units'', as sensors, as goals.

	5 Use of Event Windows
	6 How Space-like Computations Satisfy Goals
	6.1 Optimizations to effect On-The-Fly sequencing
	6.2 Meta-Effectors: Impulses Up and Goals Down
	6.3 Example Problem
	6.4 Problem Solved

	7 Security
	8 Miscellaneous


